
EOSC-HUB RECEIVES FUNDING FROM THE EUROPEAN UNION’S HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME UNDER
GRANT AGREEMENT NO. 777536.

EOSC Technical Specification

Federation Services

Monitoring

Version: 1

Status: EOSC-hub Proposal

Dissemination Level: Public

Document Link: https://wiki.eosc-hub.eu/display/EOSCDOC/Monitoring

Abstract

Monitoring allows to quickly detect, correlate, and analyse data for a fast reaction to
anomalous behaviour that may affect end-users and ultimately the productivity of the
organization. The key functional requirements of a monitoring system are monitoring
of services, reporting availability and reliability, visualization of the services status,
provide dashboard interfaces and sending real-time alerts.

This document describes the high-level service architecture for an EOSC Monitoring
service and presents the main integration and usage use cases for monitoring in EOSC.
It proposes interfaces as guidelines to be followed to achieve the interoperability
between monitoring systems in EOSC for three envisaged use cases: (1) combine
Results of one or more infrastructures in EOSC in a unified UI, (2) add a Service
Provider/Infrastructure to EOSC Monitoring and (3) Third-party services exploiting
EOSC Monitoring data.

https://wiki.eosc-hub.eu/display/EOSCDOC/Monitoring

2

COPYRIGHT NOTICE

This work by Parties of the EOSC-hub Consortium is licensed under a Creative Commons Attribution

4.0 International License (http://creativecommons.org/licenses/by/4.0/). The EOSC-hub project is

co-funded by the European Union Horizon 2020 programme under grant number 777536.

DELIVERY SLIP

Date Name Partner/Activity

From: Themis Zamani
Kostas Koumantaros
Pavel Weber
Diego Scardaci

GRNET
GRNET
KIT
EGI Foundation

Reviewed by: Jens Jensen
Catalin Condurache

STFC
EGI Foundation

DOCUMENT LOG

Issue Date Comment Author

v.1 25/03/2020 First release ready for public consultation Themis
Zamani
(GRNET),
Kostas
Koumantaros
(GRNET),
Pavel Weber
(KIT),
Diego
Scardaci (EGI
Foundation)

TERMINOLOGY

https://wiki.eosc-hub.eu/display/EOSC/EOSC-hub+Glossary

http://creativecommons.org/licenses/by/4.0/
https://wiki.eosc-hub.eu/display/EOSC/EOSC-hub+Glossary

3

Contents

1 Introduction .. 4

2 High-level Service Architecture ... 4

3 Adopted standards.. 6

4 Interoperability guidelines .. 7

5 Examples of solutions implementing this specification ... 11

5.1 Procedure to integrate a service with the EOSC Hub Monitoring 12

4

1 Introduction

Monitoring is the key service needed to gain insights into an infrastructure. It needs to be

continuous and on-demand to quickly detect, correlate, and analyse data for a fast reaction to

anomalous behaviour. The challenge of this type of monitoring is how to quickly identify and

correlate problems before they affect end-users and ultimately the productivity of the organization.

Management teams can monitor the availability and reliability of the services from a high-level view

down to individual system metrics and monitor the conformance of multiple SLAs. The key

functional requirements are:

• Monitoring of services

• Reporting availability and reliability,

• Visualization of the services status,

• Provide dashboard interfaces,

• Sending real-time alerts.

The dashboard design should enable easy access and visualisation of data for end-users. APIs should

also be supported to allow third parties to gather monitoring data from the system through them.

The key requirements of a monitoring system are:

• Support for multiple entry points (different types of systems can work together)

• Interoperable

• High availability of the different components of the system

• Loosely coupled: support API’s in the full stack so that components are independent in their

development cycles

• Support for Multiple Tenants, Configurations, Metrics and profiles to add flexibility and ease

of customisation.

2 High-level Service Architecture

The service collects status (metrics) results from one or more monitoring engine(es) and delivers

daily and/or monthly availability (A) and reliability (R) results of distributed services. Both status

results and A/R metrics are presented through a Web UI, with the ability for a user to drill -down

from the availability of a site to individual test results that contributed to the computed figure.

5

Figure 1. High level architecture of a Monitoring service

Monitoring Engine(s): This service component executes the service checks against the

infrastructure and delivers the metric data (probe check results) to the Messaging Service.

Sources of Truth: The Monitoring system should support a number of connector plugins that are

able to fetch topology, Metrics and Factors from various sources such as the CMDB and Operations

Portal. It also offers a Metric and Profile Management Component which is used in order to define

checks (probes) and associate them to service types. Each grouping of checks and service types

forms a profile. The authorization and authentication with, and between, the sources of truth are

based on X509 wherever needed.

Messaging: The monitoring system depends on a Pub/Sub Messaging Service to be in place, in order

to facilitate the communication between its components.

Computations & Analytics: This component of the system should include computational job

definitions for ingesting data, calculating status and availability/reliability and a management

service to automatically configure, deploy and execute those jobs on a distributed processing engine

for stateful computations. At the same time this component analyses the monitoring results and

sends notifications based on a set of rules, to inform the users (operators, NGIs) about the status of

their services.

6

The result of the computations should be stored in a distributed file system (in a highly fault-tolerant

system). It should provide high throughput access to application data and should be suitable for

applications that have large data sets. Apart from the storage of the raw data in a distributed file

system, data should also be stored in a document database designed for ease of development and

scaling.

WEB API: Rest-like HTTP API service that provides access to status and availability/reliability results.

It supports token based authentication and authorization with established roles. Results are

provided in JSON Format.

WEB UI: The Web UI is the component used to store, consolidate and “feed” data into the web

application. The global information from the primary and heterogeneous data sources is retrieved

by means of the different plugins. The collected information is structured and organized within

configuration files in the service and, finally, made available to the web application without the need

for any further computations. This modular architecture is conceived in order to make it easy to add

new data sources and to use cached information if a primary source is unavailable. The resulting

data is exposed as XML views through a RESTful web service interface.

3 Adopted standards

The following tables list the standards, API and protocols recommended in this specification.

Table 1. Adopted standards

Standard Short description References

REST Loosely adhere to the REST
paradigm.

https://www.ics.uci.edu/~fielding/pubs/dissertati
on/rest_arch_style.htm

SAML2 XML based protocol that is used to
securely pass the credentials
information from Identity provider to
Service point (usually web
application) that needs it.

https://wiki.oasis-open.org/security/FrontPage

X.509 X.509 is an ITU-T standard for a
public key infrastructure (PKI), also
known as PKIX (PKI X509)
Used for authorization and
authentication purposes with the
sources of truth.

https://www.rfc-editor.org/info/rfc5280

Apache
Avro

Data serialization system http://avro.apache.org/

JSON
API

A specification for building apis in
JSON format

https://jsonapi.org/

https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://wiki.oasis-open.org/security/FrontPage
https://www.rfc-editor.org/info/rfc5280
http://avro.apache.org/
https://jsonapi.org/

7

Table 2. Adopted Protocol/API

Protocol/API Short description References

HTTPS TLS secured HTTP https://tools.ietf.org/html/rfc2818

HTTP / JMX /
Shell / SQL /
Ldap ...

All the plugins should be based on
standard protocols or formats

http://software.in2p3.fr/lavoisier/ad
aptors.html

Nagios
Plugin API

Nagios API provides a reference for
the monitoring plugin developers

https://nagios-
plugins.org/doc/guidelines.html

Flink
DataStream
API

Used to execute live streaming
computational jobs on the Flink
Streaming platform to produce near
real-time results for API &
notifications

https://ci.apache.org/projects/flink/f
link-docs-release-
1.8/dev/datastream_api.html

Flink DataSet
API

Used to execute batch computational
jobs on the Flink Streaming platform
to produce status and A/R results for
the Web API

https://ci.apache.org/projects/flink/f
link-docs-release-1.8/dev/batch/

HDFS API Used to store ingested monitoring
data along with supplementary data
(topology, downtimes, weights etc) in
distributed HDFS storage

https://hadoop.apache.org/docs/r1.
2.1/hdfs_design.html

ARGO API
over REST
API

The ARGO Web API provides the
Serving Layer of ARGO. It is
comprised of a high performance and
scalable data store and a multi-
tenant REST HTTP API, which is
used for retrieving the Status,
Availability and Reliability reports and
the actual raw metric results

http://argoeu.github.io/guides/api/

4 Interoperability guidelines

This section presents the main integration and usage use cases for monitoring in EOSC and proposes

ARGO1 interfaces as guidelines to be followed to achieve the interoperability between monitoring

systems in EOSC.

1 https://argoeu.github.io/

https://tools.ietf.org/html/rfc2818
http://software.in2p3.fr/lavoisier/adaptors.html
http://software.in2p3.fr/lavoisier/adaptors.html
https://nagios-plugins.org/doc/guidelines.html
https://nagios-plugins.org/doc/guidelines.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/datastream_api.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/datastream_api.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/datastream_api.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/batch/
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/batch/
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
http://argoeu.github.io/guides/api/

8

Figure 2. Integration scenarios in the EOSC Monitoring

Use Case 1: Combine Results of one or more infrastructures in EOSC in a unified UI.

The proposed system should be able to combine the A/R results from different providers /

infrastructures in a unified web view. The general goal of “distributed monitoring” is to allow

different infrastructures with the same or different environment to scale. There are a number of

different options for supporting this. All of them are based on the concept that different sources

will publish status and performance data in a predefined form that is read from the core engine of

the monitoring service. The data should also be stamped with their source and timestamp. Every

metric should be prefixed with [source_type], following the metric naming best practices (based on

nagios). Every metric is also labelled with the hostname and service description. These predefined

messages should be sent to the Messaging system which is the service responsible to pass them to

the computations engine which performs the necessary calculations to produce the reports.

How Argo solves this

The Argo Compute engine uses as source the results of the probes sent by two or more monitoring

engines (nagios boxes) via the Argo Messaging Service. Metric data comes in the form of avro files

and contains timestamped status information about the hostname, service and specific checks

(metrics) that are being monitored. A typical item of information in the metric data avro file contains

the field listed in the table below. The compute engine calculates the Availability and Reliability of

each service group based on the instructions and mapping given by the Topology and Metric

Aggregation & Threshold profiles2. This fact allows the compute engine to be flexible enough in

2 http://argoeu.github.io/guides/argo-compute-engine/input/

http://argoeu.github.io/guides/argo-compute-engine/input/

9

order to combine results from a number of sources and produce reports for almost any combination

possible. It is therefore able to produce integrated views that combine the topologies of more than

one Service Provider or Infrastructure Providers.

Table 3. Description of avro values

Name Description Required

hostname The fqdn address of the host being monitored YES

service The name of the specific service being monitored YES

metric The name of the specific metric (check) of the service
that is being monitored

YES

timestamp Time of the monitoring check in ZULU time according to
ISO-8601 e.g. 2020-03-11T10:39:32Z

YES

status Status of the metric during the monitoring check YES

monitoring_host The fqdn of the monitoring agent NO

summary Text containing a summary of the monitoring check NO

message Text containing the detailed system output message of
the monitoring check probe

NO

tags Array containing optional user defined tags NO

Table 4. The avro schema

{"namespace": "argo.avro",

"type": "record",

"name": "metric_data",

"fields": [

 {"name": "timestamp", "type": "string"},

 {"name": "service", "type": "string"},

 {"name": "hostname", "type": "string"},

 {"name": "metric", "type": "string"},

 {"name": "status", "type": "string"},

 {"name": "monitoring_host", "type": ["null", "string"]},

 {"name": "summary", "type": ["null", "string"]},

 {"name": "message", "type": ["null", "string"]},

 {"name": "tags", "type" : ["null", {"name" : "Tags",

 "type" : "map",

 "values" : ["null", "string"]

 }]

 }]

10

}

Use Case 2: Add a Service Provider/Infrastructure to EOSC Monitoring

In order to add support for a new Service Provider or Infrastructure in the EOSC Monitoring Service,

the provider should only need to provide the topology of the services to be monitored and the

equivalent metric and aggregation profiles. The system should take care of all the actions required

to probe every endpoint in the topology with the metrics/probes defined and aggregate the results

according to the profiles defined and present them in a Web-UI.

How Argo solves this

For each new Tenant ARGO uses as topology input the xml feed by EOSC CMDBs3 and provides

POEM4, a component to allow management of probes, metrics and profiles. Profiles are the main

input required to automatically configure the monitoring engines. The defined checks are executed

in regular intervals by the monitoring engines and the results are then passed through the Argo

Messaging Service to the Argo Compute Engine5. The compute Engine performs the necessary

calculations to produce the Availability and Reliability of each endpoint, service and service group

defined in the topology according to the Aggregation profiles and then serves the results via the

ARGO-Web-API6 to be presented by the WEB-UI7.

Use Case 3: Third-party services exploiting EOSC Monitoring data

Any EOSC service should be able to retrieve and use the status information and metrics computed

by the EOSC Monitoring system. An API should be provided to allow any authorised third-party

service to retrieve such data. This API should return

• Endpoint, service and service group

• Raw data and performance data

• And the data for the sources of truth

How Argo solves this

The ARGO Web API8 comprises a high performance and scalable data store and a multi-tenant REST

HTTP API, which can be used to retrieve the Status, Availability and Reliability reports and the actual

raw metric results.

3 EOSC Configuration Management Databases GOCDB (goc.egi.eu) and DPMT (dp.eudat.eu)
4 http://argoeu.github.io/guides/poem/
5 http://argoeu.github.io/guides/argo-compute-engine/
6 http://argoeu.github.io/guides/api/
7 http://argoeu.github.io/guides/webui/
8 http://argoeu.github.io/guides/api/

http://argoeu.github.io/guides/poem/
http://argoeu.github.io/guides/argo-compute-engine/
http://argoeu.github.io/guides/api/
http://argoeu.github.io/guides/webui/
http://argoeu.github.io/guides/api/

11

5 Examples of solutions implementing this

specification

List already available Open Source services that fit with the high-level service architecture,
Include references to the service web page.

ARGO

ARGO is a flexible and scalable framework for monitoring status, availability and reliability of

services provided by infrastructures with medium to high complexity. It can generate multiple

reports using customer defined profiles (e.g. for SLA management, operations etc.) and has built-in

multi-tenant support in the core framework.

ARGO supports flexible deployment models and its modular design enables ARGO to integrate with

external systems (such as CMDBs, Service Catalogues etc.). During the report generation, ARGO can

take into account custom factors such as the importance of a specific service endpoint, scheduled

or unscheduled downtimes etc.

For the Availability & Reliability monitoring, ARGO relies on a modular architecture comprised of

several components described in the next subsections.

The ARGO Monitoring Engine

For status monitoring, ARGO relies on Nagios. All probes developed for ARGO follow the Nagios

conventions and can run on any stock Nagios box. ARGO provides an optional set of addons for the

stock Nagios that provide features such as auto-configuration from external information sources,

publishing results to external Message Brokers etc.

In order to use the new messaging service, the monitoring engine also supports the new AMS

Publisher. The AMS publisher is a new component acting as a bridge from Nagios to the ARGO

Messaging system. It is an integral part of the software stack running on the ARGO monitoring

instance and is responsible for forming and dispatching messages that are results of the Nagios

tests. t is running as a UNIX daemon and it consists of two subsystems:

• A queueing mechanism

• A publishing/dispatching part

Messages are cached in a local queue with the help of OCSP Nagios calls and each queue is being

monitored by the daemon. After a configurable number of accumulated messages, the publisher

that is associated with the queue sends them to the ARGO Messaging system and drains the queue.

The argo-nagios-ams-publisher is written in a multiprocessing manner so there is support for

multiple queue/publish pairs where for each, a new worker process will be spawned.

The ARGO Connectors

Using custom connectors, ARGO can connect to multiple external Configuration Management

Databases and Service Catalogs. Already there are connectors for the EGI and EUDAT e-

Infrastructures.

12

The ARGO Consumer

The ARGO Consumer is ingesting monitoring results in real-time from external Message Brokers.

The consumer is responsible for the initial pre-filtering of the monitoring results and for encoding

them using the AVRO serialization format before passing them to the Compute Engine.

The ARGO Compute Engine

A powerful and scalable analytics engine built on top of Hadoop and HDFS. The Compute Engine is

responsible for the aggregation of the status results and the computation of availability and

reliability of composite services using customer defined algorithms. The reorganization of the

Compute Engine to support stream processing in real time is one of the key new features. A new

streaming layer is introduced. Monitoring results flow through the AMS, to the streaming layer (in

parallel to the HDFS). The streaming layer is used in order to push raw metric results to the metric

result store and to compute status results and push them to the status store in real-time.

The ARGO Web API

The ARGO Web API provides the Serving Layer of ARGO. It is comprised of a high performance and

scalable datastore and a multi-tenant REST HTTP API, which is used for retrieving the Status,

Availability and Reliability reports and the actual raw metric results.

The ARGO Web UI

The default web UI is based on the Lavoisier Data Aggregation Framework.

ARGO has been adopted by

• EGI infrastructure

• EUDAT infrastructure

5.1 Procedure to integrate a service with the EOSC Hub Monitoring

For each service specified in the above list, describe the technical steps needed to allow a

service to exploit the core service features. Please, be concise and use references if needed.

Follow the steps

1. Open a GGUS ticket on the ARGO/SAM EGI Support Unit with:

a. Small description of the integration - use of the service

b. A name for the new project - infrastructure / project / service to monitor

2. The Monitoring team will create a new project into the development infrastructure for testing.

3. If the request refers to a new service type / probe then the probe should follow the guidelines

mentioned in the interoperability section:

https://wiki.eosc-hub.eu/display/EOSC/ARGO+Guidelines+for+monitoring+probes

http://software.in2p3.fr/lavoisier/

